Compact Confidential Transactions

Denis Lukianov

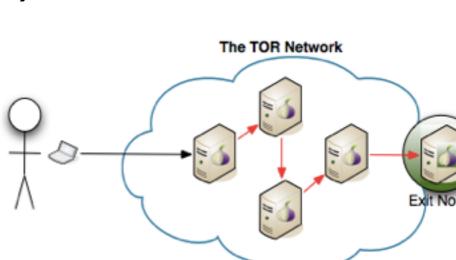
16 December 2015

Disclaimer: Challenge and verify! Warning: Large curves!

Paper: <u>http://www.voxelsoft.com/dev/cct.pdf</u>

Transaction privacy

- Unlinkability
 - Find where an output went? (ZC, Stealth Address)
- Untraceability
 - Find where the output came from? (ZC, Cryptonote)
- Confidentiality
 - Find the value of the output? (ZC, CT, CCT)
- Origination
 - Find physical sender/receiver/originator?



Transaction

In

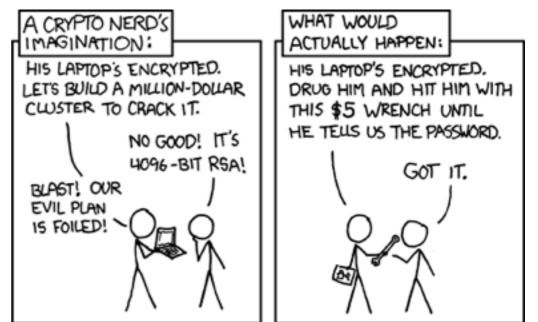
In

Out

...

Why confidentiality?

- More like cash
- Improves fungibility



- Keep salaries, rents, secret business costs and politically/culturally sensitive spending private
- Regulatory proof that only white-listed entities transacted, without disclosing how much
- Hinders prioritisation of participants for cryptanalysis

Confidential Transactions

- Only **sender** and **receiver** should know output value
- **Everyone** needs to know that Sum(inputs) = Sum(outputs)
- Can we do this with crypto?
 - Proposed by Dr. Adam Back in 2013 on bitcointalk
 - Need a space efficient proof (comparable to txn of 600 bytes)
 - CT Elements with "Borromean Ring Signatures" (2015)

With Borromean Rings

- Gregory Maxwell, Andrew Poelstra
- Initial 2013 idea: commit to every bit, prove it 0 OR 1 (Pedersen)
- Then use ring signatures of multiply-chameleon hashes to combine the "OR"/"AND" proofs
- Advantages
 - Use existing curve, 1300 verifications/sec
 - Somewhat compact, 2.5kB (600 byte txn)
 - Works on useful integers

Alternative approach

- ECC is deterministic, commutative, associative
- Cipher text equality guarantees plaintext equality
- Proof of sums in 0 bytes
 - $v^*G = q^*G + w^*G$
 - V = Q + W

• But...

Challenges

- Secrecy is vulnerable to brute force
 - Easy to get cipher-text of common values
 - Only 2⁵² combinations for the rest
- Integrity is vulnerable to modular overflow
 - Negative values can do this intentionally
 - Sum overflow allows the sender to mint coins

Maintaining secrecy

- Add a large nonce in lower bits of 64-bit value
 - $x = value * 2^{fuzzbits} + U(0, 2^{fuzzbits})$
 - 220 bits to deal with giant-step baby-step algorithm (110 bits of added security)
 - 220 + 64 = 284 bits for our x
- We're gonna need a bigger curve!

Maintaining integrity

- Only need to handle addition with small number of addends
- Each positive addition overflows by 1 bit
 - Allocate top 8 bits to allow 255 outputs
 - Must prove each addend is small enough
 - (we just made them bigger, but this is relative)
 - Must prove each addend is positive
 - (is there a cheap way to do this in zero knowledge)

Interval proofs

- Chan, Frankel, Tsiounis (CFT)
 - "Easy Come Easy Go Divisible Cash", 1998
 - Widened interval proof in only 0.241kB
- Fabrice Boudot
 - "Efficient Proofs that a Committed Number Lies in an Interval", 2000
 - Square proof also efficient (Discrete Log Equality)
 - Specific interval range proof [a, b] still quite expensive, 1.692kB
- Zhengjun Cao
 - "An Efficient Range-Bounded Commitment Scheme", 2007
 - Adopting a single base

Square proof

- Commit to E=x*G and F=x*E=x*x*G
- Pick random r, (Schnorr) commit to $U = r^*G$, $V = r^*E$
- Prove knowledge of multiplicand c = HASH(E|F|U|V) such that:
 - the multiplication and sum holds for U and V
 - the multiplicand cannot be pre-calculated (Fiat-Shamir)
- m = r + c*x (mod n)
- Verifier only needs (E, F, U, V, m) or, for space efficiency, (E, F, m, c)
- Since $r = m c^*x$, then $U = m^*G c^*x^*G$
- Verifier checks $c = HASH(E|F|m^*G c^*E | m^*E c^*F)$

Widened interval proof

- Knowing x in [0, b], proving x in some much wider [-T, T], $T = b^2 2^{t+1}$
- Commit to E=x*G
- Pick r in [0, T], commit to $R = r^*G$
- Prove knowledge of multiplicand c = HASH(E|R) such that:
 - the interval rules are met
 - the multiplicand cannot be pre-calculated
- $m = r + c^*x$
- Verifier only needs (E, R, m) or, for space efficiency, (E, m, c)
- Verifier checks c*b < m < T and c = HASH(E|m*G-c*E)

Security parameters

- t=128 is Schnorr parameter, number of bits in HASH
- I=20 is Zero-knowledge parameter from CFT
 - $m = r + c^* x$
 - Sum of two uniform numbers is not uniform!
 - But it is uniform enough if 2^l is large
 - Makes statistical attack impractical
 - Infinitesimally Small Knowledge is Zero Knowledge
- fuzzbits=440 is the size of the nonce in lower bits of x

Sum of squares per output

- Widened interval [-T, T] is not sufficient
 - Relies on RSA unfactorable group order
- Specific range proof [a, b] is expensive
- Can we use Boudot's square proof?
 - Warren Smith, "Cryptography meets voting", 2005
 - Every positive integer is sum of 4 squares
 - Every integer 4y+1 is sum of 3 squares
 - Zero knowledge proof for a sum of squares
 - Requires at least 6 ECC commitments

Widened interval with known group order

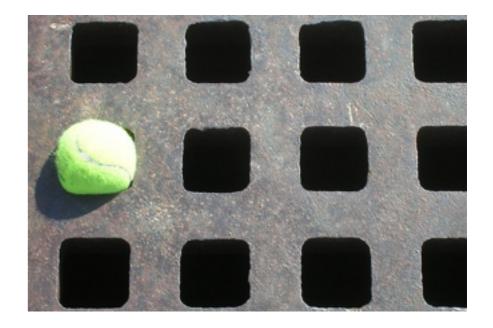
- Widened interval relies on unknown group order, not valid for ECC
 - $m = r + c^* x$
 - If prover picks a modular inverse, modulo group order
 - e.g. pick x = (N-1)/2
 - x is the encryption of "divide by -2" and verifier is fooled for even c
- But we can require another interval proof on (x+1)
 - Inverse moduli are unlikely to be adjacent

If only...

- Maybe very efficient to combine proofs
 - CFT's interval proof (E, m, c)
 - Boudot's square proof (E, F, m, c)
- If only every output value was already a square
 - Is that so unreasonable?

Make every output a square

- $x' = value * 2^{fuzzbits} + U(0, 2^{fuzzbits})$
- $x = isqrt(x'), E = x^*G, F = x^*E$
- delta = $x' x^2$

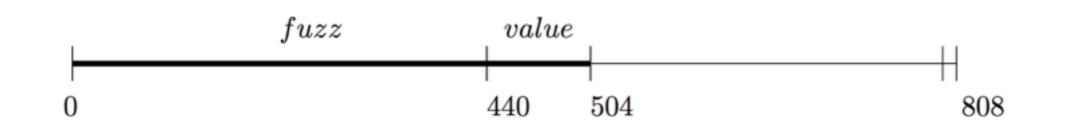


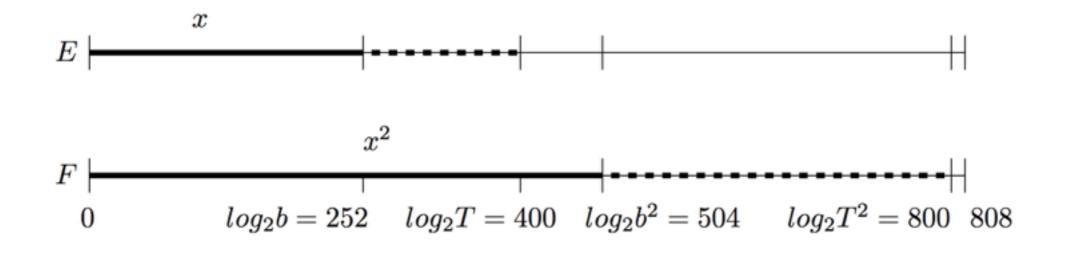
- How big is delta and what to do with it?
 - In a transaction, we can flush it into the fee
 - $Sum(output_j) + (fee)$
 - $Sum(F_j) + (Sum(delta_j) + random)$

Maintaining secrecy

- If F is always the encryption of a square
 - E always contains half the 220 fuzz bits
 - That's only 55 bits of added security
 - We'll need 440 fuzz bits + 52 value bits for x^2
 - And CFT will need more

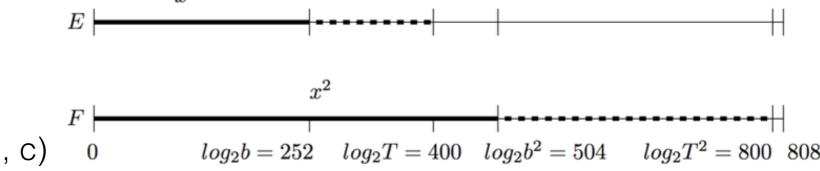
A bigger curve





Square and interval proof

- Knowing x in [0, b] and two large curves with base point G
- Proving x in some much wider [-T, T], $T = b^2 2^{t+1}$
- Commit to $E=x^*G$, $F = x^*E$
- Pick r, w in [0, T], commit to $U = r^*G$, $V = r^*E$, $W = w^*G$
- c = HASH(E|F|U|V|W)
 - $m = r + c^*x; q = w + c^*(x+1)$
 - Verifier only needs (E, F, m, q, c)



- Check c*b < m < T, c*b < q < T
- Check $c = HASH(E|F|m^*G-c^*E|m^*E-c^*F|q^*G-c^*(E+G))$

Compact Confidential Transactions

- Space efficient: Only 0.35kB per output
 - 102 bytes for each E, F; 50 for m, q; 16 for c; 32 for DH(x)
 - Compared to 2.5kB for CT, but CCT hides twice as many bits
 - Only store F in unspent outputs (UTXO)
- Semi computationally efficient: 60 output verifications/sec
 - 4 ECC 808-bit multiplications, faster because scalars are small
 - OpenSSL w/precalc on single core of a Q9550 "Core 2 Quad"
 - Good enough for real-time Bitcoin txns, but not for initial sync

CT/CCT Comparison

Metric	СТ	CCT	Improvement
value bits hidden	32	64+	100%
blockchain space, kB	2.55	0.35	728%
verifications per second	1300 libsecp256k1	600* OpenSSL	-53%
(*normalised by 1.82x for published i7 CPU, can go a whole lot faster)			

CT/CCT Features

- Compatible with CoinJoin and variable denominations
- Compatible with spent transaction pruning
- Optional dual keys for an address
 - Spend keys unaffected, script language untouched
 - View private key provides visibility, but not spend power
 - View public key included in address
 - Optionally in scriptSig for link-ability
- Adjustable security parameters
- No way of identifying dust, no brain-wallets (which lack entropy anyway)

Implementation

- PoW P2P blockchain and GUI
 - 6000 lines of Python
- Smallness prover/verifier only 60 lines
- CCT transaction handling only 400 lines
- Beware Python's "math.sqrt" and "**0.5"
 - They do not work for large numbers

Work in progress

- Peer review
- Practical fee calculations for private and public chains
 - Sum-of-3 squares (3x more expensive) for zero leakage
- Faster multiplication
 - Reduce curve size requirement, scalars
 - Investigate curve extensions (GLV-GLS)
 - Implement faster algorithms (point halving, etc, hardware)
- Mitigate DoS attacks on slow computation

Acknowledgements

- Thanks for significant input:
 - Andrew Poelstra
 - Broke an initial over-optimistic proof
 - Suggested statistical attack on m
 - Jochen Hoenicke
 - Found missing items in hash for combined proof
 - Suggested single-square is good enough
 - Jonathan Bootle
 - Suggested known group order attack on m
 - Gregory Maxwell
 - Review