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Transaction privacy
• Unlinkability 

• Find where an output went? (ZC, Stealth Address) 

• Untraceability 

• Find where the output came from? (ZC, Cryptonote) 

• Confidentiality

• Find the value of the output? (ZC, CT, CCT)

• Origination 

• Find physical sender/receiver/originator?



Why confidentiality?
• More like cash 

• Improves fungibility 

• Keep salaries, rents, secret business costs and 
politically/culturally sensitive spending private 

• Regulatory proof that only white-listed entities 
transacted, without disclosing how much 

• Hinders prioritisation of participants for cryptanalysis



Confidential Transactions
• Only sender and receiver should know output value 

• Everyone needs to know that Sum(inputs) = Sum(outputs) 

• Can we do this with crypto? 

• Proposed by Dr. Adam Back in 2013 on bitcointalk 

• Need a space efficient proof (comparable to txn of 600 
bytes) 

• CT Elements with “Borromean Ring Signatures” (2015)



With Borromean Rings
• Gregory Maxwell, Andrew Poelstra 

• Initial 2013 idea: commit to every bit, prove it 0 OR 1 (Pedersen) 

• Then use ring signatures of multiply-chameleon hashes to 
combine the “OR”/“AND” proofs 

• Advantages 

• Use existing curve, 1300 verifications/sec 

• Somewhat compact, 2.5kB (600 byte txn) 

• Works on useful integers



Alternative approach
• ECC is deterministic, commutative, associative 

• Cipher text equality guarantees plaintext equality 

• Proof of sums in 0 bytes 

• v*G = q*G + w*G 

• V = Q + W 

• But…



Challenges
• Secrecy is vulnerable to brute force 

• Easy to get cipher-text of common values 

• Only 252 combinations for the rest 

• Integrity is vulnerable to modular overflow 

• Negative values can do this intentionally 

• Sum overflow allows the sender to mint coins



Maintaining secrecy
• Add a large nonce in lower bits of 64-bit value 

• x = value * 2fuzzbits + U(0, 2fuzzbits) 

• 220 bits to deal with giant-step baby-step 
algorithm (110 bits of added security) 

• 220 + 64 = 284 bits for our x 

• We’re gonna need a bigger curve!



Maintaining integrity
• Only need to handle addition with small number of addends 

• Each positive addition overflows by 1 bit 

• Allocate top 8 bits to allow 255 outputs 

• Must prove each addend is small enough 

• (we just made them bigger, but this is relative) 

• Must prove each addend is positive 

• (is there a cheap way to do this in zero knowledge)



Interval proofs
• Chan, Frankel, Tsiounis (CFT) 

• “Easy Come - Easy Go Divisible Cash”, 1998 

• Widened interval proof in only 0.241kB 

• Fabrice Boudot 

• “Efficient Proofs that a Committed Number Lies in an Interval”, 2000 

• Square proof also efficient (Discrete Log Equality)

• Specific interval range proof [a, b] still quite expensive, 1.692kB 

• Zhengjun Cao 

• “An Efficient Range-Bounded Commitment Scheme”, 2007 

• Adopting a single base



Square proof
• Commit to E=x*G and F=x*E=x*x*G 

• Pick random r, (Schnorr) commit to U = r*G, V = r*E 

• Prove knowledge of multiplicand c = HASH(E|F|U|V) such that: 

• the multiplication and sum holds for U and V 

• the multiplicand cannot be pre-calculated (Fiat-Shamir) 

• m = r + c*x (mod n) 

• Verifier only needs (E, F, U, V, m) or, for space efficiency, (E, F, m, c) 

• Since r = m - c*x, then U = m*G - c*x*G 

• Verifier checks c = HASH(E|F|m*G - c*E | m*E - c*F)



Widened interval proof
• Knowing x in [0, b], proving x in some much wider [-T, T], T = b*2t+l 

• Commit to E=x*G 

• Pick r in [0, T], commit to R = r*G 

• Prove knowledge of multiplicand c = HASH(E|R) such that: 

• the interval rules are met 

• the multiplicand cannot be pre-calculated 

• m = r + c*x 

• Verifier only needs (E, R, m) or, for space efficiency, (E, m, c) 

• Verifier checks c*b < m < T and c = HASH(E|m*G-c*E)



Security parameters
• t=128 is Schnorr parameter, number of bits in HASH 

• l=20 is Zero-knowledge parameter from CFT 

• m = r + c*x 

• Sum of two uniform numbers is not uniform! 

• But it is uniform enough if 2l is large 

• Makes statistical attack impractical 

• Infinitesimally Small Knowledge is Zero Knowledge 

• fuzzbits=440 is the size of the nonce in lower bits of x



Sum of squares per output
• Widened interval [-T, T] is not sufficient 

• Relies on RSA unfactorable group order 

• Specific range proof [a, b] is expensive 

• Can we use Boudot’s square proof? 

• Warren Smith, “Cryptography meets voting”, 2005 

• Every positive integer is sum of 4 squares 

• Every integer 4y+1 is sum of 3 squares  

• Zero knowledge proof for a sum of squares 

• Requires at least 6 ECC commitments



Widened interval 
with known group order

• Widened interval relies on unknown group order, not valid for ECC 

• m = r + c*x 

• If prover picks a modular inverse, modulo group order 

• e.g. pick x = (N-1)/2 

• x is the encryption of “divide by -2” and verifier is fooled for 
even c 

• But we can require another interval proof on (x+1) 

• Inverse moduli are unlikely to be adjacent



If only…
• Maybe very efficient to combine proofs 

• CFT’s interval proof (E, m, c) 

• Boudot's square proof (E, F, m, c) 

• If only every output value was already a square 

• Is that so unreasonable?



Make every output a square
• x’ = value * 2fuzzbits + U(0, 2fuzzbits) 

• x = isqrt(x’), E = x*G, F = x*E 

• delta = x’ - x2 

• How big is delta and what to do with it? 

• In a transaction, we can flush it into the fee 

• Sum(outputj) + (fee) 

• Sum(Fj) + (Sum(deltaj) + random)



Maintaining secrecy
• If F is always the encryption of a square 

• E always contains half the 220 fuzz bits 

• That’s only 55 bits of added security 

• We’ll need 440 fuzz bits + 52 value bits for x2 

• And CFT will need more



A bigger curve



Square and interval proof
• Knowing x in [0, b] and two large curves with base point G 

• Proving x in some much wider [-T, T], T = b*2t+l 

• Commit to E=x*G, F = x*E 

• Pick r, w in [0, T], commit to U = r*G, V = r*E, W = w*G 

• c = HASH(E|F|U|V|W) 

• m = r + c*x; q = w + c*(x+1) 

• Verifier only needs (E, F, m, q, c) 

• Check c*b < m < T, c*b < q < T 

• Check c = HASH(E|F|m*G-c*E|m*E-c*F|q*G-c*(E+G))



Compact Confidential Transactions
• Space efficient: Only 0.35kB per output 

• 102 bytes for each E, F; 50 for m, q; 16 for c; 32 for DH(x) 

• Compared to 2.5kB for CT, but CCT hides twice as many bits 

• Only store F in unspent outputs (UTXO) 

• Semi computationally efficient: 60 output verifications/sec 

• 4 ECC 808-bit multiplications, faster because scalars are small 

• OpenSSL w/precalc on single core of a Q9550 “Core 2 Quad” 

• Good enough for real-time Bitcoin txns, but not for initial sync



CT/CCT Comparison

Metric CT CCT Improvement

value bits 
hidden 32 64+ 100%

blockchain 
space, kB 2.55 0.35 728%

verifications per 
second

1300 
libsecp256k1

600* 
OpenSSL -53%

(*normalised by 1.82x for published i7 CPU, 
can go a whole lot faster)



CT/CCT Features
• Compatible with CoinJoin and variable denominations 

• Compatible with spent transaction pruning 

• Optional dual keys for an address 

• Spend keys unaffected, script language untouched 

• View private key provides visibility, but not spend power 

• View public key included in address 

• Optionally in scriptSig for link-ability 

• Adjustable security parameters 

• No way of identifying dust, no brain-wallets (which lack entropy anyway)



Implementation
• PoW P2P blockchain and GUI 

• 6000 lines of Python 

• Smallness prover/verifier only 60 lines 

• CCT transaction handling only 400 lines 

• Beware Python’s “math.sqrt” and “**0.5” 

• They do not work for large numbers



Work in progress
• Peer review 

• Practical fee calculations for private and public chains 

• Sum-of-3 squares (3x more expensive) for zero leakage 

• Faster multiplication 

• Reduce curve size requirement, scalars 

• Investigate curve extensions (GLV-GLS) 

• Implement faster algorithms (point halving, etc, hardware) 

• Mitigate DoS attacks on slow computation
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