
Compact Confidential
Transactions

Denis Lukianov

16 December 2015

Disclaimer: Challenge and verify!
Warning: Large curves!

Paper: http://www.voxelsoft.com/dev/cct.pdf

http://www.voxelsoft.com/dev/cct.pdf

Transaction privacy
• Unlinkability

• Find where an output went? (ZC, Stealth Address)

• Untraceability

• Find where the output came from? (ZC, Cryptonote)

• Confidentiality

• Find the value of the output? (ZC, CT, CCT)

• Origination

• Find physical sender/receiver/originator?

Why confidentiality?
• More like cash

• Improves fungibility

• Keep salaries, rents, secret business costs and
politically/culturally sensitive spending private

• Regulatory proof that only white-listed entities
transacted, without disclosing how much

• Hinders prioritisation of participants for cryptanalysis

Confidential Transactions
• Only sender and receiver should know output value

• Everyone needs to know that Sum(inputs) = Sum(outputs)

• Can we do this with crypto?

• Proposed by Dr. Adam Back in 2013 on bitcointalk

• Need a space efficient proof (comparable to txn of 600
bytes)

• CT Elements with “Borromean Ring Signatures” (2015)

With Borromean Rings
• Gregory Maxwell, Andrew Poelstra

• Initial 2013 idea: commit to every bit, prove it 0 OR 1 (Pedersen)

• Then use ring signatures of multiply-chameleon hashes to
combine the “OR”/“AND” proofs

• Advantages

• Use existing curve, 1300 verifications/sec

• Somewhat compact, 2.5kB (600 byte txn)

• Works on useful integers

Alternative approach
• ECC is deterministic, commutative, associative

• Cipher text equality guarantees plaintext equality

• Proof of sums in 0 bytes

• v*G = q*G + w*G

• V = Q + W

• But…

Challenges
• Secrecy is vulnerable to brute force

• Easy to get cipher-text of common values

• Only 252 combinations for the rest

• Integrity is vulnerable to modular overflow

• Negative values can do this intentionally

• Sum overflow allows the sender to mint coins

Maintaining secrecy
• Add a large nonce in lower bits of 64-bit value

• x = value * 2fuzzbits + U(0, 2fuzzbits)

• 220 bits to deal with giant-step baby-step
algorithm (110 bits of added security)

• 220 + 64 = 284 bits for our x

• We’re gonna need a bigger curve!

Maintaining integrity
• Only need to handle addition with small number of addends

• Each positive addition overflows by 1 bit

• Allocate top 8 bits to allow 255 outputs

• Must prove each addend is small enough

• (we just made them bigger, but this is relative)

• Must prove each addend is positive

• (is there a cheap way to do this in zero knowledge)

Interval proofs
• Chan, Frankel, Tsiounis (CFT)

• “Easy Come - Easy Go Divisible Cash”, 1998

• Widened interval proof in only 0.241kB

• Fabrice Boudot

• “Efficient Proofs that a Committed Number Lies in an Interval”, 2000

• Square proof also efficient (Discrete Log Equality)

• Specific interval range proof [a, b] still quite expensive, 1.692kB

• Zhengjun Cao

• “An Efficient Range-Bounded Commitment Scheme”, 2007

• Adopting a single base

Square proof
• Commit to E=x*G and F=x*E=x*x*G

• Pick random r, (Schnorr) commit to U = r*G, V = r*E

• Prove knowledge of multiplicand c = HASH(E|F|U|V) such that:

• the multiplication and sum holds for U and V

• the multiplicand cannot be pre-calculated (Fiat-Shamir)

• m = r + c*x (mod n)

• Verifier only needs (E, F, U, V, m) or, for space efficiency, (E, F, m, c)

• Since r = m - c*x, then U = m*G - c*x*G

• Verifier checks c = HASH(E|F|m*G - c*E | m*E - c*F)

Widened interval proof
• Knowing x in [0, b], proving x in some much wider [-T, T], T = b*2t+l

• Commit to E=x*G

• Pick r in [0, T], commit to R = r*G

• Prove knowledge of multiplicand c = HASH(E|R) such that:

• the interval rules are met

• the multiplicand cannot be pre-calculated

• m = r + c*x

• Verifier only needs (E, R, m) or, for space efficiency, (E, m, c)

• Verifier checks c*b < m < T and c = HASH(E|m*G-c*E)

Security parameters
• t=128 is Schnorr parameter, number of bits in HASH

• l=20 is Zero-knowledge parameter from CFT

• m = r + c*x

• Sum of two uniform numbers is not uniform!

• But it is uniform enough if 2l is large

• Makes statistical attack impractical

• Infinitesimally Small Knowledge is Zero Knowledge

• fuzzbits=440 is the size of the nonce in lower bits of x

Sum of squares per output
• Widened interval [-T, T] is not sufficient

• Relies on RSA unfactorable group order

• Specific range proof [a, b] is expensive

• Can we use Boudot’s square proof?

• Warren Smith, “Cryptography meets voting”, 2005

• Every positive integer is sum of 4 squares

• Every integer 4y+1 is sum of 3 squares

• Zero knowledge proof for a sum of squares

• Requires at least 6 ECC commitments

Widened interval
with known group order

• Widened interval relies on unknown group order, not valid for ECC

• m = r + c*x

• If prover picks a modular inverse, modulo group order

• e.g. pick x = (N-1)/2

• x is the encryption of “divide by -2” and verifier is fooled for
even c

• But we can require another interval proof on (x+1)

• Inverse moduli are unlikely to be adjacent

If only…
• Maybe very efficient to combine proofs

• CFT’s interval proof (E, m, c)

• Boudot's square proof (E, F, m, c)

• If only every output value was already a square

• Is that so unreasonable?

Make every output a square
• x’ = value * 2fuzzbits + U(0, 2fuzzbits)

• x = isqrt(x’), E = x*G, F = x*E

• delta = x’ - x2

• How big is delta and what to do with it?

• In a transaction, we can flush it into the fee

• Sum(outputj) + (fee)

• Sum(Fj) + (Sum(deltaj) + random)

Maintaining secrecy
• If F is always the encryption of a square

• E always contains half the 220 fuzz bits

• That’s only 55 bits of added security

• We’ll need 440 fuzz bits + 52 value bits for x2

• And CFT will need more

A bigger curve

Square and interval proof
• Knowing x in [0, b] and two large curves with base point G

• Proving x in some much wider [-T, T], T = b*2t+l

• Commit to E=x*G, F = x*E

• Pick r, w in [0, T], commit to U = r*G, V = r*E, W = w*G

• c = HASH(E|F|U|V|W)

• m = r + c*x; q = w + c*(x+1)

• Verifier only needs (E, F, m, q, c)

• Check c*b < m < T, c*b < q < T

• Check c = HASH(E|F|m*G-c*E|m*E-c*F|q*G-c*(E+G))

Compact Confidential Transactions
• Space efficient: Only 0.35kB per output

• 102 bytes for each E, F; 50 for m, q; 16 for c; 32 for DH(x)

• Compared to 2.5kB for CT, but CCT hides twice as many bits

• Only store F in unspent outputs (UTXO)

• Semi computationally efficient: 60 output verifications/sec

• 4 ECC 808-bit multiplications, faster because scalars are small

• OpenSSL w/precalc on single core of a Q9550 “Core 2 Quad”

• Good enough for real-time Bitcoin txns, but not for initial sync

CT/CCT Comparison

Metric CT CCT Improvement

value bits
hidden 32 64+ 100%

blockchain
space, kB 2.55 0.35 728%

verifications per
second

1300
libsecp256k1

600*
OpenSSL -53%

(*normalised by 1.82x for published i7 CPU,
can go a whole lot faster)

CT/CCT Features
• Compatible with CoinJoin and variable denominations

• Compatible with spent transaction pruning

• Optional dual keys for an address

• Spend keys unaffected, script language untouched

• View private key provides visibility, but not spend power

• View public key included in address

• Optionally in scriptSig for link-ability

• Adjustable security parameters

• No way of identifying dust, no brain-wallets (which lack entropy anyway)

Implementation
• PoW P2P blockchain and GUI

• 6000 lines of Python

• Smallness prover/verifier only 60 lines

• CCT transaction handling only 400 lines

• Beware Python’s “math.sqrt” and “**0.5”

• They do not work for large numbers

Work in progress
• Peer review

• Practical fee calculations for private and public chains

• Sum-of-3 squares (3x more expensive) for zero leakage

• Faster multiplication

• Reduce curve size requirement, scalars

• Investigate curve extensions (GLV-GLS)

• Implement faster algorithms (point halving, etc, hardware)

• Mitigate DoS attacks on slow computation

Acknowledgements
• Thanks for significant input:

• Andrew Poelstra

• Broke an initial over-optimistic proof

• Suggested statistical attack on m

• Jochen Hoenicke

• Found missing items in hash for combined proof

• Suggested single-square is good enough

• Jonathan Bootle

• Suggested known group order attack on m

• Gregory Maxwell

• Review

